

Zhi Ren 2013/9/19

Reference

 Book: Isocyanide Chemistry, edited by Valentine G. Nenajdenko (Moscow state universtiy), published by Wiley in 2012

Outline

- 1. General Reactivity of Isocyanide
- 2. Heterocycle synthesis involving isocyanide
- 3. Isocyanide in organometallics

1. General Reactivity of Isocyanide

- 1.1 Introduction
- 1.2 Preparation
- 1.3 Properties

1.1 Introduction

- The first isocyanide (isonitrile) compound was obtained by Lieke in 1859.
- Ivar Ugi (1930-2005) discover many important chemistry of isocyanides, e.g., the Ugi reaction.
- Isocyanide is a useful synthetic building block. Being stable carbenes, isonitriles are highly reactive compounds that can react with almost any type of reagents (electrophiles, nucleophiles and even radicals).
- Today isocyanide chemistry is a broad and important part of organic chemistry, inorganic, coordination, polymeric, combinatorial and medicinal chemistry.

• Two-Step synthesis from primary amine

 $R-NH_2 \xrightarrow{\text{Formylation}} R-NH-CHO \xrightarrow{\text{Dehydration}} R-NC$

- There are four general methods of formylation and several reagents are available for dehydration.
- Some isocyanides are prepared from alcohol.

• Four methods for formylation:

• Four methods for formylation:

R−NH₂ Formylation R−NH-CHO Dehydration R−NC

Conditions:

Most common and mild is using POCI₃/NEt₃ at low temperature

diphosgene and triphosgene are also used.

Less commonly used: Burgess reagent

CCl₄/PPh₃/NEt₃ system

• From Alcohol:

For 1^o alcohols only:

1.3 Properties

- 1.3.1 Isocyanide-Cyanide Rearrangement
- 1.3.2 Oxidation/Reduction of Isocyanide
- 1.3.3 Reactions with Electrophiles
- 1.3.4 Reactions with Nucleophiles

1.3.1 Isocyanide-Cyanide Rearrangement

- The thermal rearrangement discovered in 1873 by Weith. The majortiy of isocyanides isomerize at 200-250°C. The radical inhibitors can suppress the side reaction (Decyano rxn).
- Aromatic isocyanides isomerize about 10 times faster than aliphatic isocyanides.

1.3.1 Isocyanide-Cyanide Rearrangement

- The substituent has minimal influence on the rate of this reaction. Because the requirements for bond formation and breakage were in opposition.
- The substituent has influence on the thermal dynamic of this reaction. The isomerization was favored by the σ -accepting or π -donating substituent.

1.3.2 Oxidation/Reduction of Isocyanide

 $\begin{array}{c} \oplus \ominus \\ R-N \equiv C \end{array} \xrightarrow{O_3 \text{ or } O_2/NiCl_2} R-N \equiv C = O \quad R = Alk \\ 1 \quad 7-99\% \quad 7 \end{array}$

Scheme 2.6

Scheme 2.7

Scheme 2.8

1.3.2 Oxidation/Reduction of Isocyanide

Θ

Benzene, reflux, 64h

-N=C=S 12 R¹ = OMe, Ph R² = H, OMe

1.3.2 Oxidation/Reduction of Isocyanide

Scheme 2.15 ⊕ ⊖ Bu₃SnH, AIBN R−N≡C Benzene, reflux R−H + Bu₃SnCN

R = Bn (97% yield), c-Hexyl (47% yield), t-Bu (45% yield)

Scheme 2.17

• React with Acyl Halides

Scheme 2.20

Tom Livinghouse. Tetrahedron 55 (1999) 9947-9978

Tom Livinghouse. J. Am. Chem. Soc., 1987, 109 (2), pp 590–592.

React with activated alkenes and alkynes

Quast, H. Liebigs Ann. Chem., (4), 635-641. Nagel, F.J. J. Am. Chem. Soc.,91,4761.

• React with activated alkenes and alkynes

Scheme 2.33

Yanagida, T. Tetrahedron Lett., 10 (39), 3407

Seidenspinner, H.M. Liebigs Ann. Chem., (5), 1003-1012.

• General scheme

• React with organometallic compounds

• General scheme

Electrophilic

- The isocyanides are very poor electrophiles, that can only react with strong nucleophiles such as organometallic compounds.
- The electon-withdrawing effect of the isocyano group enhances the acidity of the α -C-H bond gorup in aliphatic isocyanides, as well as the ortho-methyl group in aromatic isocyanides.

• React with organometallic compounds

• React with hydroxide, alcohols, and amines

 Isocyanides are inert towards water, hydroxide, and amines without the addition of catalysts.

2. Heterocycle synthesis involving isocyanide

 MCRs are defined as one-pot processes in which at least three compounds react to form a single product that contains essentially all the atoms of the starting materials.

Scheme 3.2 The Passerini and Ugi reactions-the classical isocyanide-based MCRs.

2. Heterocycle synthesis involving isocyanide

- To save time, I will only use few examples to demonstrate the point, if you are interested, read the book and the recommended reviews from the book (available online).
- The examples are come from the Chapter 13 of the book.

2. Heterocycle synthesis involving isocyanide

- 2.1 Furans
- 2.2 Pyrroles
- 2.3 Oxazoles
- 2.4 Imidazoles
- 2.5 Indoles
- 2.6 Quinolines
- The heterocycles that are not covered in this talk: Isoxazoles, Pyrazoles, Thioazoles, Benzofurans, Benzimidazoles, Quioxaline

2.1 Furans

• Tetra-substituted 2-aminofurans is only type that been reported.

Sridhar, B. Synthesis, 2010, 2571-2576.

2.2 Pyrroles

• 3,4- disubstituted pyrroles (not MCRs)

Product	Reactants	Conditions (yields %)	Ref.
$R_1 \rightarrow R_2$ N H	$R_1 \xrightarrow{R_2} O$ Tos $N^{+ \leq C^-}$	NaH, DMSO/Et ₂ O, r.t., 15 min–3 h (10–88)	[26, 27]
Ar ₁ Ar ₂ /H	Ar ₁ Ar ₂ /H Tos N ^{+≲C−}	t-BuONa, DMSO, 25–100°C, 1–18h (44–91)	[31]

van Leusen, D. Tetrahedron Lett., 1972, 5337-5340. Perez, O.F.A. Rev. Soc. Quim. Peru, 75, 12-16. Cosford, N.D.P. Org. Lett., 4, 3537-3539.

2.2 Pyrroles

• 2,3,4- trisubstituted pyrroles (not MCRs)

Product	Reactants	Conditions (yields %)	Ref.
$Z X = NO_2, CN, COPh,$ $COMe, CO_2Et$ $Z = SMe, NR_1R_2$ $R = CO_2Et, Ts, Ph$ 4-CI-Ph	$X = NO_2, CN, COPh,$ $COMe, CO_2Et$ $Y = H, CO_2Et, COPh,$ COMe $Z = SMe, NR_1R_2$ $R = CO_2Et, Ts, Ph,$ 4-CI-Ph	DBU, DMF, 120°C, 5–8h or <i>t</i> -BuOK, THF, –78°C to r.t., 2h (65–86)	[57]

Junjappa, H. J. Org. Chem., 72, 1246-1251.

2.3 Oxazoles

• 5-substituted oxazoles

Product	Reactants	Conditions (yields %)	Ref.
R	Tos N ^{+≶C−} R)=O H	K ₂ CO ₃ , MeOH, reflux, 2h (57–71)	[70, 71]

• 4,5-disubstituted oxazoles

Tos

 N
 Tos
 N+²C⁻
 K₂CO₃, MeOH, 20°C, [70]
 [70]

 10 min–2.5h (53–80)
 R
 0
 10 min–2.5h (53–80)
 [70]

 N
 Siderius, H.
 Tetrahedron Lett., 1972, 2369-2372.
 [70]

Van Leusen, A.M. Chem. Pharm. Bull., 27, 793-796

2.3 Oxazoles

• 2,5-disubstituted oxazoles

2.4 Imidazoles

• 2-substituted imidazoles (5-substituted can be synthesis using isocyanide)

Nenajdenko, V.G. J. Org. Chem., 72, 7878-7885

2.4 Imidazoles

• 1,4- and 4,5-disubstituted imidazoles

Product	Reactants	Conditions (yields, %)	Ref.
R_1 R_2 N H	Tos N ^{+,C−} R ₁	Piperazine, THF, r.t. 18h <mark>(23–81)</mark>	[73, 134]
	R₂ →O NH₄OH H		

Zhu, J. Chem. Eur. J.,17,880-889. Mellinger, M. Pure Appl. Chem., 74, 1349–1357

2.4 Imidazoles

• 1,4,5-trisubstituted imidazoles

Product	Reactants	Conditions (yields, %)	Ref.
	Tos N ^{+[;]C[−]} R ₁	K ₂ CO ₃ , DMF, r.t., 3–5 h (62–87)	[73, 134]
Ŕ ₃	R ₂ H H ₂ N R ₃		

Zhu, J. Chem. Eur. J.,17,880-889. Mellinger, M. Pure Appl. Chem., 74, 1349–1357.

2.5 Indoles

• There are more examples using TM to synthesize indoles.

Product	Reactants	Conditions (yields, %)	Ref.
R_1 R_2 R_3	R₁ R₂ N ⁺ _℃ CI N ⁺ _℃ C-	THF, –78°C, 2h (49–74)	[175]
O R ₁	O R ₁	2 equiv. LDA or LTMP, —78 °C, diglyme (55—68) or	[178, 179]
RET	R∯N ^t _C −	Cu ₂ O, benzene, reflux, 2h (60–85)	

Hisatoshi Konishi	Tetrahedron 65 (2009) 7523–7526
Takeo Saegusa	Tetrahedron Lett. No.12, pp 1039
Takeo Saegusa	J. Org. Chem., 1979, 44 (12), pp 2030–2032

2.6 Quinolines

• Mainly undergo 6-endo-dig

2.7 Summary

- 1. Isocyanides have been used as a powerful tool in the preparation of numerous diverse structures, especially in heterocycles and peptides.
- 2. The MCRs shown in this presentation are very simple. The MCRs can quickly prepare a large number of drug-like scaffolds under mild conditions.

3. Isocyanide in organometallics

- 3.1 Introduction
- 3.2 Low valent complex
- 3.3 Carbene complexes derived from metal bound isocyanides
- 3.4 Application and summary

3.1 Introduction

- The first isocyanide complex Ag(CNR)(CN) was obtained by Gautierin 1869.
- But until 1977, the first zero-valent isocyanide complexes Co₂(CNR)₈ were obtained.
- Now, a large number of isocyanide complexes involving metals from Group 5 to Group 11 and Ti.

3.1 Introduction

- Unlike CO ligand (0.12 Debye), the isocyanide ligands are more polar (NCPh is 3.44 Debye).
- In general, the isocyanide ligands are considered stronger σ-donor and weaker π-acceptor compared to CO.
- Aryl isocyanide are better π-acceptor because the aromatic ring can delocalize the back-donating electron.
- The fluorinated aryl isocyanide are very strong π -acceptors.

3.2 Low valent complex

• Pd(0) complex as example

Joshua S. Figueroa* J. AM. CHEM. SOC. 2009, 131, 11318-11319

3.3 Carbene complexes derived from metal bound isocyanides

 Pd(II) complex as example of coupling of amine or alcohol

LeGrande M. Slaughter*

Chem. Commun., 2007, 3294–3296

3.3 Carbene complexes derived from metal bound isocyanides

 Pd(II) complex as example of coupling with dipoles

Vadim Yu. Kukushkin

Chem. Eur. J. 2009, 15, 5969-5978

Pd-catalyzed imidazoline formation

Scheme 4.29

Kálmán J. Szabó^{a,*} Adv. Synth. Catal. 2007, 349, 2585–2594

• Cu(I) catalyzed 2-borylindole synthesis

Naoto Chatani J. Org. Chem. Vol. 75, No. 14, 2010

- 1. Isocyanide is good ligand, so it is not surprise it can form so many metal complex.
- 2. The catalytic reaction is not very well developed, and similar transformation can be done without using TM. That is why these paper do not have a high impact.
- 3. To design the unique catalytic cycle for the isocyanide-metal complex could have great impact.

Thanks!

• Happy mid-Autumn festival.

Questions!

1. Predict the products

Questions!

3. Predict the intermediates and draw the mechanism for the first step:

CO₂ and MeOH are involved in the first step

Qestions!

Qestions!

Scheme 1.

Qestions!

• Q3

Urea